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Abstract

Recent probabilistic models take advantage of the performance of approximate
inference for single-cell analysis. After some discussion of new forms of data,
models, and their algorithms, we test whether single-cell Hierarchical Poisson
Factorization is suited to non-RNA-seq data. Using posterior predictive checks, we
find that the model is not.

1 Introduction

Advances in the last 15 years in single-cell analysis have enabled the vast collection of complementary
datasets that capture several dimensions of cellular state at unprecedented resolution. Many of these
datasets consist of count data where each entry in a matrix represents the number of reads of a
sequence that uniquely corresponds to a feature of a single cell, and where larger counts correspond
to greater prevalence in the cell. The earliest single-cell datasets were single-cell RNA sequence
(scRNA-seq), where the feature is directly the mRNA transcription sequences of a gene []. More
recently, Stoeckius et al. [2017] has developed Cellular Indexing of Transcriptomes and Epitopes
by Sequencing (CITE-seq) where cells are first stained with a library of engineered antibodies that
bind to surface proteins. Since these antibodies have unique oligonucleotide tails whose sequencing
is compatible with existing single-cell sequencing methods, they could count the prevalence of
both mRNA sequences and some surface proteins within a single pass in the traditional sequencing
workflows.

Stoeckius et al. [2017] have shown that this method of protein detection is consistent with data from
flow cytometry. But it is more flexible since the throughput of flow cytometry is limited both by the
available library of antibody-bound fluorophores which fluoresces laser light, and the capacity of
sensors to distinguish between fluorescent spectra. Beside epitopic data, CITE-seq can be used to tag
subpopulations of cells, and so enables multiplex experimental data within a single lane of existing
single-cell sequencing technology, as well as the detection of multiplets in sequencing droplets that
have so far limited the loading of cells per run of microfluidic sequencing systems. This innovation
and others such as ATAC-seq generate multimodal datasets that have redundant information, and
they are orders of magnitude larger than earlier datasets though many are also very sparse. Matrix
factorization is a dimension reduction method to consolidate this information and project it into a
smaller and more manageable subspace for further analysis. In this paper, we use a probabilistic
matrix factorization model called single-cell Hierarchical Poisson Factorization (scHPF) that is
especially well-suited to sparse count matrices.

Over roughly the same period, advances in approximate probabilistic models have enabled the
estimation of more complicated models with checks for accuracy and reliability. One subset, called
a hierarchical models, are built up out of mixtures of probability distributions where the parameter
for one distribution, say the proportion of a binomial distribution, is itself modeled as a draw from
another distribution, say a beta distribution. The advantage of these probabilistic models over
non-probabilistic models is at least twofold. First, most models already specify distributions for
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Figure 1: Representation of Variational Inference. Blei et al. [2017]

Figure 2: Versions of the objective. Blei et al. [2017]

parameters, only they do this covertly as assumptions that are not available for criticism. By contrast,
using probability distributions to model phenomena directly allows us to ask whether each component
of the overall model is reasonable and properly specified. Second, since training the model is learning
parameters of distributions (sometimes called posterior inference), the trained model is a generative
model that can simulate data. Thus we can check whether the simulated data matches the distribution
of actual data. These posterior predictive checks (PPCs) again enable a kind of model criticism that
is not available to non-probabilistic models. As a demonstration of their utility, we will first use PPCs
to first assess whether scHPF is a reasonable probabilistic model of scRNA-seq data of about 12,000
protein coding genes from nearly 6,000 Peripheral Blood Mononuclear Cells (PBMC). Second, we
will assess whether the count of cell-surface protein tags generated by a version of CITE-seq can be
reasonably modeled by the same probabilistic model that we use to model to the scRNA-seq count
data.

2 Methods

2.1 Variational Inference

Although there have been improvements in the performance of Markov Chain Monte Carlo (MCMC),
it can still be slow on large and complicated datasets such as single-cell data. An alternative is
variational inference (VI). A more tractable family of approximations of the model, the variational
family D consisting of candidate densities q(·) with parameters z, is substituted for the actual
distribution, p(z|x), in the training task. The difference of a candidate density from the target
true distribution is measured by the Evidence Lower-bound (ELBO) which itself is a tractable
approximation, up to an intractable constant log p(x), of the Kullback–Leibler divergence.

The parameters for the next candidate variational density are varied according to coordinate ascent
optimization by optimizing one parameter in turn while holding all other parameters fixed. This
requires that we can factor the approximate density into a form such that each parameter belongs to a
density that is conditionally independent of the other parameters z as in (15) and (16). This form is
called the complete conditional. For each update step of the coordinate ascent algorithm in (17), we
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Figure 3: Complete Condition and Algorithm Update. Blei et al. [2017]

set the new variable parameter to the exponentiated expectation over the fixed parameters of the log
probability of the old variable parameter given the other fix parameters and the data.1

One challenge of VI is that the choice of variational method is not independent of model we wish to
approximate, since models differ in their possible variational family. The model we used was first
developed by Gopalan et al. [2014] and then refined for application to single-cell data by Levitin et al.
[2019]. This factorization is especially suited to sparse count matrices and has an efficient variational
family and method called mean-field approximation. But since VI effectively recasts probabilistic
inference as an optimization task, the promise of VI for single-cell data rests on the advantage it can
take of developments in stochastic optimization for more complex models that do not themselves
have a correspondingly efficient variational families and methods Lopez et al. [2018].

2.2 Single-cell Hierarchical Poisson Factorization

In the paradigmatic matrix factorization problem, each entry in a matrix of n users and m items is
a count x of a particular item i for a particular user u–this may be views of a movie for Alice, or
purchases of a product for Bob. The count can be decomposed into a sum of k weighted scores, or
the inner product for k factors. The k weights might be understood as the intensity of k preferences
for each user, while the k scores might be the amount of some feature or genre for each item, but we
emphasize that the k factors need not correspond to any such features or preferences. As a result, we
can see the n,m matrix of counts xi,j as the matrix product of two lower dimension factor matrices,
(n, k) and (k,m).

Figure 4: Fig. 2. Probabilistic Graphical
Model

In hierarchical Poisson factorization, each count is treated
as a draw from a Poisson distribution whose rate param-
eter λi is itself drawn from a gamma distribution. As in
traditional matrix factorization, this parameter is the in-
ner product of k user and item factors, but each of the
k user “preference” factors is characterized as an alloca-
tion from a gamma distributed budget (likewise for the
k item “genre” factors). Intuitively this makes sense in
cases where factors are constrained like we might imagine
preferences and genres to be. That is, a strong preference
in one component might sideline preferences elsewhere,
just as a movie that emphasizes one genre might be pre-
cluded from other genres. Moreover, treating factors as
allocations from budgets explicitly models the source of
sparsity in count data, since budgets over many factors
will necessarily include several small weights, and these in
turn contribute to small rate parameters for Poisson distri-
butions. Finally, hierarchical Poisson distributions with variable rates drawn from gamma distribution
are marginalized as negative binomials which is a common choice for overdispersed count data.

In scHPF, we apply this hierarchical framework to scRNA-seq data: mRNA counts are drawn from
Poisson distributions with variable rate parameters, while cell and gene factors are allocations from
their respective gamma distributed budgets. Each set of cell and gene budgets, in turn, are themselves
‘budgeted’ by an additional scale parameter that is drawn from its own gamma distributed ‘capacity.’

1My intuition is that we are trying to stretch a sheet over a lumpy bed single-handedly. By moving one corner
of the sheet while the other parts are stuck in place, we both find an optimal position for the corner we moving at
this step, and we set a new fixed position by which to adjust the next corner. We have to loop through the corners
several times to get the overall optimal fit.
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An important question is whether the prevalence of tagged cell-surface proteins captured in CITE-seq
can be modelled by scHPF. On the one hand, cell-surface proteins share features with mRNA: they
serve as an important mechanisms of cell-differentiation, and they are presumably metabolically
‘budgeted’ at least as much as mRNA. So we might think that their prevalence is a weighted sum of
latent budgets analogous to scRNA-seq data. On the other hand, recent studies have shown that the
frequency of some mRNA and coordinated cell-surface proteins are out of joint. For example, when
cells are treated with phorbol myristate acetate (PMA) and their levels of RNA PD-LI and protein
FACS MRI are measured at common intervals post-treatment, the RNA peaks and declines while the
proteins levels continue to climb Burr et al. [2017].

2.3 Posterior Predictive Checks

The strength of probabilistic modeling is that, however indispensable domain knowledge is guiding
model formulation, simulations from our trained model must confront the distribution of the observed
data. PPCs begin by drawing a set of parameters from the posterior density of parameters θ given
data x. These θi then parameterized the data generating distribution of xi ∼ p(x̂|θi) Gelman et al.
[2013]. Taken together, we have the posterior predictive distribution:

In order to compare the actual and simulated data, we construct a relevant test statistic that summarizes
the information in both distributions. For example, we can ask what is the probability that the
maximum value of the simulated distribution is greater than the simulated value in the observed data:
Pr(Tmax(xsim) > Tmax(xobs)).

2.4 Data

We used a 10X Genomics dataset of 5k Peripheral blood mononuclear cells from a healthy donor with
cell surface proteins. We converted these to a loom file with the loompy package. We then segmented
the dataset into RNA-seq and cell-surface protein (n = 32) datasets. We filtered the RNA-seq dataset
by a whitelist for protein coding genes that was provided by the authors of the scHPF package. scHPF
does is free from any other correction or normalization steps, which recent studies suggest has the
biggest impact on single-cell analysis[]

3 Results

3.1 Selecting and Scoring K

We trained with factors k = 7, 8, 9 for the RNA-seq dataset and found that we got the best separation
with k = 7. We judged separation by counting the greatest pairwise overlaps in top scores for genes
and cells for each factor. Following Levitin et al. [2019], each gene and cell’s score for a factor k is
the expected values of its factor loading bg, k or hi, k scaled by its respective its capacity ηg,k or ξi,k,
respectively:

3.2 Posterior Predictive Checks

Figure 5: Cell and gene scores

For PPCs, we took 10 samples of the learned parame-
ters theta and beta for each factor k, resulting in two ar-
rays with dimensions (ncells, 7factors, 10samples) and
(mgenes, 7factors, 10samples). These matrices were
multiplied to form an nxmx10 matrix of Poisson rate pa-
rameters. We drew a Poisson variable for each rate param-
eter and take the average these across samples. Since we
were interested in the dispersion across Poisson variables,
we use the Kolmogorov-Smirnov test, a non-parametric
test of similarity between cumulative distribution functions, as our test statistics of the samples from
Poisson distributions. We report our results in Table 1. Tests on both mRNA and Protein return a
very small and presumably significant p-value, though there is an order of magnitude difference in
the statistics.

In addition, to get an overall sense of the distribution of the matrix, we calculated the coefficient of vari-
ation for each row and column of the n x m matrix: std(xi,.)/mean(xi,.) and std(x.,g)/mean(x.,g)
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Table 1: Goodness of Fit
Part

Name KS-stat P-value

RNA-seq 0.00432 0.0
Protein 0.07794 0.0

Figure 6: Observed and Simulated Compared

(Fig. 6a-d). In the case of RNA-seq data, we see that the rowwise and columnwise variation closely
resembles those of our data. But we do see that our model still underestimates the variation and
so also the dispersion. This would be a good reason to change the scale hyperparameter a′ of the
‘capacity’ parameter, which indirectly influences dispersion of x.

The box plots of the protein data tell a different story. Although the KS-statistic was strong, we can
see clear differences between the observed and simulated protein data. The observed row coefficients
are much more dispersed than the simulated ones, and the simulated column coefficients are much
more right skewed than the observed. This suggests that scHPF is not a good choice of model for
cell-surface protein counts. Moreover, the KS-statistic may report false-significance and is probably
not a good test statistic in this application.

4 Conclusions and further work

We have replicated one state-of-the-art machine learning model and an algorithm for probabilistic
modelling on a new dataset. We tested scHPF in a novel application by implementing posterior
predictive checks with test-statistics and graphical displays. Although there was reason to think
scHPF might perform well on counts of cell-surface proteins, it does not seem to, and this casts
doubt on whether it handle other modalities of single-cell data. It must also be asked whether such
‘bespoke’ models are useful in general practice, or whether they should be reserved only for otherwise
intractable modeling problems. In future work, we could explore more accurate alternatives to the
KS-statistic, and in the case of proteins, we could adjust the hyperparameters in order to force less
sparsity on the protein counts since they are in general larger.
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